module main

// main module

import os { input, user_os }
import time
import math

type MyTime = time.Time

fn main() {
	println('hello world')

	println(sub(100, 50))

	n := write_log(.return_error) or {
		println('Error: $err')
		0
	}
	println('$n bytes written')

	// Functions can be passed to other functions
	println(run(5, sqr)) // "25"
	// Anonymous functions can be declared inside other functions:
	double_fn := fn (n int) int {
		return n + n
	}
	println(run(5, double_fn)) // "10"
	// Functions can be passed around without assigning them to variables:
	res := run(5, fn (n int) int {
		return n + n
	})
	println(res) // "10"
	// You can even have an array/map of functions:
	fns := [sqr, cube]
	println(fns[0](10)) // "100"
	fns_map := {
		'sqr':	sqr
		'cube': cube
	}
	println(fns_map['cube'](2)) // "8"
}

fn add(x int, y int) int {
	return x + y
}

fn sub(x int, y int) int {
	return x - y
}

// This is a single line comment.
/*
This is a multiline comment.
   /* It can be nested. */
*/

fn foo() (int, int) {
	return 2, 3
}

a, b := foo()
println(a) // 2
println(b) // 3
c, _ := foo() // ignore values using `_`

name := 'Bob'
assert name.len == 3

s := r'hello\nworld'

// all int literals are supported
assert '0xc3'.int() == 195
assert '0o10'.int() == 8
assert '0b1111_0000_1010'.int() == 3850
assert '-0b1111_0000_1010'.int() == -3850

name := 'Bob'
println('Hello, $name!') // Hello, Bob!

x := 123.4567
println('[${x:.2}]')
println('[${x:10}]')
println('[${int(x):-10}]')
println('[${int(x):010}]')
println('[${int(x):b}]')
println('[${int(x):o}]')
println('[${int(x):X}]')

println('[${10.0000:.2}]')
println('[${10.0000:.2f}]')

rocket := `πŸš€`
assert rocket.bytes() == [u8(0xf0), 0x9f, 0x9a, 0x80]

assert `\x61` == `a`
assert `\141` == `a`
assert `\u0061` == `a`

// multibyte literals work too
assert `\u2605` == `β˜…`
assert `\u2605`.bytes() == [u8(0xe2), 0x98, 0x85]
assert `\xe2\x98\x85`.bytes() == [u8(0xe2), 0x98, 0x85]
assert `\342\230\205`.bytes() == [u8(0xe2), 0x98, 0x85]

a := 0x7B
b := 0b01111011
c := 0o173

num := 1_000_000
three := 0b0_11
float_num := 3_122.55
hexa := 0xF_F
oct := 0o17_3

a := i64(123)
b := u8(42)
c := i16(12345)

f := 1.0
f1 := f64(3.14)
f2 := f32(3.14)

f0 := 42e1 // 420
f1 := 123e-2 // 1.23
f2 := 456e+2 // 45600

mut nums := [1, 2, 3]
nums << 4
println(nums)
nums << [5, 6, 7]

mut names := ['John']
names << 'Peter'
names << 'Sam'

names := ['John', 'Peter', 'Sam']
println('Alex' in names) // "false"

mut nums := [1, 2, 3]
println(nums.len) // "3"
println(nums.cap) // "3" or greater
nums = [] // The array is now empty
println(nums.len) // "0"

mut a := []int{len: 10000, cap: 30000, init: 3}

users := []int{}

mut numbers := []int{cap: 1000}
println(numbers.len) // 0
// Now appending elements won't reallocate
for i in 0 .. 1000 {
	numbers << i
}

mut square := []int{len: 6, init: it * it}
// square == [0, 1, 4, 9, 16, 25]

struct Point {
	x int
	y int
}

struct Line {
	p1 Point
	p2 Point
}

type ObjectSumType = Line | Point

mut object_list := []ObjectSumType{}
object_list << Point{1, 1}
object_list << Line{
	p1: Point{3, 3}
	p2: Point{4, 4}
}
dump(object_list)
/*
object_list: [ObjectSumType(Point{
	x: 1
	y: 1
}), ObjectSumType(Line{
	p1: Point{
		x: 3
		y: 3
	}
	p2: Point{
		x: 4
		y: 4
	}
})]
*/

mut a := [][]int{len: 2, init: []int{len: 3}}
a[0][1] = 2

nums := [1, 2, 3, 4, 5, 6]
even := nums.filter(it % 2 == 0)
println(even) // [2, 4, 6]
// filter can accept anonymous functions
even_fn := nums.filter(fn (x int) bool {
	return x % 2 == 0
})
println(even_fn)

nums := [1, 2, 3]
println(nums.any(it == 2)) // true
println(nums.all(it >= 2)) // false

mut numbers := [1, 3, 2]
numbers.sort() // 1, 2, 3
numbers.sort(a > b) // 3, 2, 1

struct User {
	age	 int
	name string
}

mut users := [User{21, 'Bob'}, User{20, 'Zarkon'}, User{25, 'Alice'}]
users.sort(a.age < b.age) // sort by User.age int field
users.sort(a.name > b.name) // reverse sort by User.name string field

custom_sort_fn := fn (a &User, b &User) int {
	// return -1 when a comes before b
	// return 0, when both are in same order
	// return 1 when b comes before a
	if a.name == b.name {
		if a.age < b.age {
			return 1
		}
		if a.age > b.age {
			return -1
		}
		return 0
	}
	if a.name < b.name {
		return -1
	} else if a.name > b.name {
		return 1
	}
	return 0
}
users.sort_with_compare(custom_sort_fn)

nums := [0, 10, 20, 30, 40]
println(nums[1..4]) // [10, 20, 30]
println(nums[..4]) // [0, 10, 20, 30]
println(nums[1..]) // [10, 20, 30, 40]

mut a := [0, 1, 2, 3, 4, 5]
mut b := a[2..4].clone()

a := [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
println(a#[-3..]) // [7, 8, 9]
println(a#[-20..]) // [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
println(a#[-20..-8]) // [0, 1]
println(a#[..-3]) // [0, 1, 2, 3, 4, 5, 6]

// empty arrays
println(a#[-20..-10]) // []
println(a#[20..10]) // []
println(a#[20..30]) // []

files := ['pippo.jpg', '01.bmp', '_v.txt', 'img_02.jpg', 'img_01.JPG']
filtered := files.filter(it#[-4..].to_lower() == '.jpg').map(it.to_upper())

mut fnums := [3]int{} // fnums is a fixed size array with 3 elements.
fnums[0] = 1
fnums[1] = 10
fnums[2] = 100
println(fnums) // => [1, 10, 100]
println(typeof(fnums).name) // => [3]int

anums := fnums[..]

mut m := map[string]int{} // a map with `string` keys and `int` values
m['one'] = 1
m['two'] = 2
println(m['one']) // "1"
println(m['bad_key']) // "0"
println('bad_key' in m) // Use `in` to detect whether such key exists
println(m.keys()) // ['one', 'two']
m.delete('two')

numbers := {
	'one': 1
	'two': 2
}
println(numbers)

arr := [1, 2, 3]
large_index := 999
val := arr[large_index] or { panic('out of bounds') }
println(val)
// you can also do this, if you want to *propagate* the access error:
val2 := arr[333]?
println(val2)

name := os.input('Enter your name: ')
println('Hello, $name!')

fn (mut t MyTime) century() int {
	return int(1.0 + math.trunc(f64(t.year) * 0.009999794661191))
}

fn main() {
	mut my_time := MyTime{
		year: 2020
		month: 12
		day: 25
	}
	println(time.new_time(my_time).utc_string())
	println('Century: $my_time.century()')
}

a := 10
b := 20
if a < b {
	println('$a < $b')
} else if a > b {
	println('$a > $b')
} else {
	println('$a == $b')
}

num := 777
s := if num % 2 == 0 { 'even' } else { 'odd' }
println(s)
// "odd"

struct Abc {
	val string
}

struct Xyz {
	foo string
}

type Alphabet = Abc | Xyz

x := Alphabet(Abc{'test'}) // sum type
if x is Abc {
	// x is automatically casted to Abc and can be used here
	println(x)
}
if x !is Abc {
	println('Not Abc')
}

match x {
	Abc {
		// x is automatically casted to Abc and can be used here
		println(x)
	}
	Xyz {
		// x is automatically casted to Xyz and can be used here
		println(x)
	}
}

nums := [1, 2, 3]
println(1 in nums) // true
println(4 !in nums) // true
m := {
	'one': 1
	'two': 2
}
println('one' in m) // true
println('three' !in m) // true

enum Token {
	plus
	minus
	div
	mult
}

struct Parser {
	token Token
}

parser := Parser{}
if parser.token == .plus || parser.token == .minus || parser.token == .div || parser.token == .mult {
	// ...
}
if parser.token in [.plus, .minus, .div, .mult] {
	// ...
}

mut numbers := [0, 1, 2]
for mut num in numbers {
	num++
}

struct SquareIterator {
	arr []int
mut:
	idx int
}

fn (mut iter SquareIterator) next() ?int {
	if iter.idx >= iter.arr.len {
		return error('')
	}
	defer {
		iter.idx++
	}
	return iter.arr[iter.idx] * iter.arr[iter.idx]
}

nums := [1, 2, 3, 4, 5]
iter := SquareIterator{
	arr: nums
}
for squared in iter {
	println(squared)
}

m := {
	'one': 1
	'two': 2
}
for key, value in m {
	println('$key -> $value')
	// Output: one -> 1
	//		   two -> 2
}

mut sum := 0
mut i := 0
for i <= 100 {
	sum += i
	i++
}

mut num := 0
for {
	num += 2
	if num >= 10 {
		break
	}
}

for i := 0; i < 10; i += 2 {
	// Don't print 6
	if i == 6 {
		continue
	}
	println(i)
}

outer: for i := 4; true; i++ {
	println(i)
	for {
		if i < 7 {
			continue outer
		} else {
			break outer
		}
	}
}

match os {
	'darwin' { println('macOS.') }
	'linux' { println('Linux.') }
	else { println(os) }
}

s := match number {
	1 { 'one' }
	2 { 'two' }
	else { 'many' }
}

match true {
	2 > 4 { println('if') }
	3 == 4 { println('else if') }
	2 == 2 { println('else if2') }
	else { println('else') }
}

enum Color {
	red
	blue
	green
}

fn is_red_or_blue(c Color) bool {
	return match c {
		.red, .blue { true } // comma can be used to test multiple values
		.green { false }
	}
}

c := `v`
typ := match c {
	`0`...`9` { 'digit' }
	`A`...`Z` { 'uppercase' }
	`a`...`z` { 'lowercase' }
	else { 'other' }
}

enum State {
	normal
	write_log
	return_error
}

// write log file and return number of bytes written
fn write_log(s State) ?int {
	mut f := os.create('log.txt')?
	defer {
		f.close()
	}
	if s == .write_log {
		// `f.close()` will be called after `f.write()` has been
		// executed, but before `write_log()` finally returns the
		// number of bytes written to `main()`
		return f.writeln('This is a log file')
	} else if s == .return_error {
		// the file will be closed after the `error()` function
		// has returned - so the error message will still report
		// it as open
		return error('nothing written; file open: $f.is_opened')
	}
	// the file will be closed here, too
	return 0
}

[params]
struct ButtonConfig {
	text		string
	is_disabled bool
	width		int = 70
	height		int = 20
}

struct Button {
	text   string
	width  int
	height int
}

fn new_button(c ButtonConfig) &Button {
	return &Button{
		width: c.width
		height: c.height
		text: c.text
	}
}

button := new_button(text: 'Click me', width: 100)
// the height is unset, so it's the default value
assert button.height == 20
new_button(ButtonConfig{text:'Click me', width:100})

struct Foo {
	a int // private immutable (default)
mut:
	b int // private mutable
	c int // (you can list multiple fields with the same access modifier)
pub:
	d int // public immutable (readonly)
pub mut:
	e int // public, but mutable only in parent module
__global:
	// (not recommended to use, that's why the 'global' keyword starts with __)
	f int // public and mutable both inside and outside parent module
}

struct User {
	age int
}

fn (u User) can_register() bool {
	return u.age > 16
}

user := User{
	age: 10
}
println(user.can_register()) // "false"
user2 := User{
	age: 20
}
println(user2.can_register()) // "true"

struct Size {
mut:
	width  int
	height int
}

fn (s &Size) area() int {
	return s.width * s.height
}

struct Button {
	Size
	title string
}

mut button := Button{
	title: 'Click me'
	height: 2
}

button.width = 3
assert button.area() == 6
assert button.Size.area() == 6

mut button := Button{
	Size: Size{
		width: 3
		height: 2
	}
}

struct Rgba32_Component {
	r byte
	g byte
	b byte
	a byte
}

union Rgba32 {
	Rgba32_Component
	value u32
}

clr1 := Rgba32{
	value: 0x008811FF
}

clr2 := Rgba32{
	Rgba32_Component: Rgba32_Component{
		a: 128
	}
}

sz := sizeof(Rgba32)
unsafe {
	println('Size: ${sz}B,clr1.b: $clr1.b,clr2.b: $clr2.b')
}

fn multiply_by_2(mut arr []int) {
	for i in 0 .. arr.len {
		arr[i] *= 2
	}
}

mut nums := [1, 2, 3]
multiply_by_2(mut nums)
println(nums)
// "[2, 4, 6]"

struct User {
	name		  string
	age			  int
	is_registered bool
}

fn register(u User) User {
	return User{
		...u
		is_registered: true
	}
}

mut user := User{
	name: 'abc'
	age: 23
}
user = register(user)
println(user)

fn sum(a ...int) int {
	mut total := 0
	for x in a {
		total += x
	}
	return total
}

println(sum()) // 0
println(sum(1)) // 1
println(sum(2, 3)) // 5
// using array decomposition
a := [2, 3, 4]
println(sum(...a)) // <-- using prefix ... here. output: 9
b := [5, 6, 7]
println(sum(...b)) // output: 18

fn sqr(n int) int {
	return n * n
}

fn cube(n int) int {
	return n * n * n
}

fn run(value int, op fn (int) int) int {
	return op(value)
}

my_int := 1
my_closure := fn [my_int] () {
	println(my_int)
}
my_closure() // prints 1

fn new_counter() fn () int {
	mut i := 0
	return fn [mut i] () int {
		i++
		return i
	}
}

c := new_counter()
println(c()) // 1
println(c()) // 2
println(c()) // 3

mut i := 0
mut ref := &i
print_counter := fn [ref] () {
	println(*ref)
}

print_counter() // 0
i = 10
print_counter() // 10

struct Foo {
	abc int
}

fn (foo &Foo) bar() {
	println(foo.abc)
}

struct Node<T> {
	val	  T
	left  &Node<T>
	right &Node<T>
}

const (
	pi	  = 3.14
	world = 'δΈ–η•Œ'
)

const e = 2.71828

struct Color {
	r int
	g int
	b int
}

fn rgb(r int, g int, b int) Color {
	return Color{
		r: r
		g: g
		b: b
	}
}

const (
	numbers = [1, 2, 3]
	red		= Color{
		r: 255
		g: 0
		b: 0
	}
	// evaluate function call at compile-time*
	blue = rgb(0, 0, 255)
)

module mymodule

pub const golden_ratio = 1.61803

fn calc() {
	println(mymodule.golden_ratio)
}

pub fn say_hi() {
	println('hello from mymodule!')
}

fn factorial(n u32) u32 {
	if dump(n <= 1) {
		return dump(1)
	}
	return dump(n * factorial(n - 1))
}

fn init() {
	// your setup code here ...
}

struct Dog {
	breed string
}

fn (d Dog) speak() string {
	return 'woof'
}

struct Cat {
	breed string
}

fn (c Cat) speak() string {
	return 'meow'
}

// unlike Go and like TypeScript, V's interfaces can define fields, not just methods.
interface Speaker {
	breed string
	speak() string
}

fn main() {
	dog := Dog{'Leonberger'}
	cat := Cat{'Siamese'}

	mut arr := []Speaker{}
	arr << dog
	arr << cat
	for item in arr {
		println('a $item.breed says: $item.speak()')
	}
}

pub interface Reader {
mut:
	read(mut buf []byte) ?int
}

pub interface Writer {
mut:
	write(buf []byte) ?int
}

// ReaderWriter embeds both Reader and Writer.
// The effect is the same as copy/pasting all of the
// Reader and all of the Writer methods/fields into
// ReaderWriter.
pub interface ReaderWriter {
	Reader
	Writer
}

type Filter = fn (string) string

fn filter(s string, f Filter) string {
	return f(s)
}

my_filter := Filter(uppercase)
my_filter := uppercase

enum Color {
	@none
	red
	green
	blue
}

color := Color.@none

enum Cycle {
	one
	two
	three
}

fn (c Cycle) next() Cycle {
	match c {
		.one {
			return .two
		}
		.two {
			return .three
		}
		.three {
			return .one
		}
	}
}

mut c := Cycle.one
for _ in 0 .. 10 {
	println(c)
	c = c.next()
}

struct Empty {}

struct Node {
	value f64
	left  Tree
	right Tree
}

type Tree = Empty | Node

// sum up all node values
fn sum(tree Tree) f64 {
	return match tree {
		Empty { 0 }
		Node { tree.value + sum(tree.left) + sum(tree.right) }
	}
}

fn main() {
	left := Node{0.2, Empty{}, Empty{}}
	right := Node{0.3, Empty{}, Node{0.4, Empty{}, Empty{}}}
	tree := Node{0.5, left, right}
	println(sum(tree)) // 0.2 + 0.3 + 0.4 + 0.5 = 1.4
}

struct Moon {}

struct Mars {}

struct Venus {}

type World = Mars | Moon | Venus

fn (m Mars) dust_storm() bool {
	return true
}

fn main() {
	mut w := World(Moon{})
	assert w is Moon
	w = Mars{}
	// use `as` to access the Mars instance
	mars := w as Mars
	if mars.dust_storm() {
		println('bad weather!')
	}
}

if mut w is Mars {
	assert typeof(w).name == 'Mars'
	if w.dust_storm() {
		println('bad weather!')
	}
}

fn (m Moon) moon_walk() {}
fn (m Mars) shiver() {}
fn (v Venus) sweat() {}

fn pass_time(w World) {
	match w {
		// using the shadowed match variable, in this case `w` (smart cast)
		Moon { w.moon_walk() }
		Mars { w.shiver() }
		else {}
	}
}

struct User {
	id	 int
	name string
}

struct Repo {
	users []User
}

fn (r Repo) find_user_by_id(id int) ! User {
	for user in r.users {
		if user.id == id {
			// V automatically wraps this into an option type
			return user
		}
	}
	return error('User $id not found')
}

fn main() {
	repo := Repo{
		users: [User{1, 'Andrew'}, User{2, 'Bob'}, User{10, 'Charles'}]
	}
	user := repo.find_user_by_id(10) or {
		 println(err) // "User 10 not found"
		 return
	}
	println(user.id) // "10"
	println(user.name) // "Charles"
}

import net.http

fn f(url string) ?string {
	resp := http.get(url)?
	return resp.text
}

resp := http.get(url) or { return err }

if resp := http.get('https://google.com') {
	println(resp.text) // resp is a http.Response, not an optional
} else {
	println(err)
}

fn do_something(s string) !string {
	if s == 'foo' {
		return 'foo'
	}
	return error('invalid string') // Could be `return none` as well
}

a := do_something('foo') or { 'default' } // a will be 'foo'
b := do_something('bar') or { 'default' } // b will be 'default'
println(a)
println(b)

struct Repo<T> {
	db DB
}

struct User {
	id	 int
	name string
}

struct Post {
	id	 int
	user_id int
	title string
	body string
}

fn new_repo<T>(db DB) Repo<T> {
	return Repo<T>{db: db}
}

// This is a generic function. V will generate it for every type it's used with.
fn (r Repo<T>) find_by_id(id int) ?T {
	table_name := T.name // in this example getting the name of the type gives us the table name
	return r.db.query_one<T>('select * from $table_name where id = ?', id)
}

db := new_db()
users_repo := new_repo<User>(db) // returns Repo<User>
posts_repo := new_repo<Post>(db) // returns Repo<Post>
user := users_repo.find_by_id(1)? // find_by_id<User>
post := posts_repo.find_by_id(1)? // find_by_id<Post>

fn compare<T>(a T, b T) int {
	if a < b {
		return -1
	}
	if a > b {
		return 1
	}
	return 0
}

fn p(a f64, b f64) { // ordinary function without return value
	c := math.sqrt(a * a + b * b)
	println(c)
}

fn main() {
	go p(3, 4)
	// p will be run in parallel thread
}

fn get_hypot(a f64, b f64) f64 {
	c := sqrt(a * a + b * b)
	return c
}

fn main() {
	g := go get_hypot(54.06, 2.08) // spawn thread and get handle to it
	h1 := get_hypot(2.32, 16.74)   // do some other calculation here
	h2 := g.wait()				   // get result from spawned thread
	println('Results: $h1, $h2')   // prints `Results: 16.9, 54.1`
}

fn task(id int, duration int) {
	println('task $id begin')
	time.sleep(duration * time.millisecond)
	println('task $id end')
}

fn main() {
	mut threads := []thread{}
	threads << go task(1, 500)
	threads << go task(2, 900)
	threads << go task(3, 100)
	threads.wait()
	println('done')
}

fn expensive_computing(i int) int {
	return i * i
}

fn main() {
	mut threads := []thread int{}
	for i in 1 .. 10 {
		threads << go expensive_computing(i)
	}
	// Join all tasks
	r := threads.wait()
	println('All jobs finished: $r')
}

ch := chan int{} // unbuffered - "synchronous"
ch2 := chan f64{cap: 100} // buffer length 100

ch := chan int{}
ch2 := chan f64{}
// ...
ch.close()
// ...
m := <-ch or {
	println('channel has been closed')
}

// propagate error
y := <-ch2 ?

fn main() {
	ch := chan f64{}
	ch2 := chan f64{}
	ch3 := chan f64{}
	mut b := 0.0
	c := 1.0
	// ... setup go threads that will send on ch/ch2
	go fn (the_channel chan f64) {
		time.sleep(5 * time.millisecond)
		the_channel <- 1.0
	}(ch)
	go fn (the_channel chan f64) {
		time.sleep(1 * time.millisecond)
		the_channel <- 1.0
	}(ch2)
	go fn (the_channel chan f64) {
		_ := <-the_channel
	}(ch3)

	select {
		a := <-ch {
			// do something with `a`
			eprintln('> a: $a')
		}
		b = <-ch2 {
			// do something with predeclared variable `b`
			eprintln('> b: $b')
		}
		ch3 <- c {
			// do something if `c` was sent
			time.sleep(5 * time.millisecond)
			eprintln('> c: $c was send on channel ch3')
		}
		500 * time.millisecond {
			// do something if no channel has become ready within 0.5s
			eprintln('> more than 0.5s passed without a channel being ready')
		}
	}
	eprintln('> done')
}

struct Abc {
	x int
}

a := 2.13
ch := chan f64{}
res := ch.try_push(a) // try to perform `ch <- a`
println(res)
l := ch.len // number of elements in queue
c := ch.cap // maximum queue length
is_closed := ch.closed // bool flag - has `ch` been closed
println(l)
println(c)
mut b := Abc{}
ch2 := chan Abc{}
res2 := ch2.try_pop(mut b) // try to perform `b = <-ch2`

struct St {
mut:
	x int // data to be shared
}

fn (shared b St) g() {
	lock b {
		// read/modify/write b.x
	}
}

fn main() {
	shared a := St{
		x: 10
	}
	go a.g()
	// ...
	rlock a {
		// read a.x
	}
}

import json

struct Foo {
	x int
}

struct User {
	name string [required]
	age	 int
	// Use the `skip` attribute to skip certain fields
	foo Foo [skip]
	// If the field name is different in JSON, it can be specified
	last_name string [json: lastName]
}

data := '{ "name": "Frodo", "lastName": "Baggins", "age": 25 }'
user := json.decode(User, data) or {
	eprintln('Failed to decode json, error: $err')
	return
}
println(user.name)
println(user.last_name)
println(user.age)
// You can also decode JSON arrays:
sfoos := '[{"x":123},{"x":456}]'
foos := json.decode([]Foo, sfoos)?
println(foos[0].x)
println(foos[1].x)


struct User {
	name  string
	score i64
}

mut data := map[string]int{}
user := &User{
	name: 'Pierre'
	score: 1024
}

data['x'] = 42
data['y'] = 360

println(json.encode(data)) // {"x":42,"y":360}
println(json.encode(user)) // {"name":"Pierre","score":1024}

fn test_hello() {
	assert hello() == 'Hello world'
}

import strconv

fn test_atoi() ? {
	assert strconv.atoi('1')? == 1
	assert strconv.atoi('one')? == 1 // test will fail
}

fn test_subtest() {
	res := os.execute('${os.quoted_path(@VEXE)} other_test.v')
	assert res.exit_code == 1
	assert res.output.contains('other_test.v does not exist')
}

os.execute('${os.quoted_path("{test}. \${another test}. \{and another\}")} other_test.v')

struct RefStruct {
mut:
	r &MyStruct
}

[heap]
struct MyStruct {
	n int
}

fn main() {
	m := MyStruct{}
	mut r := RefStruct{
		r: &m
	}
	r.g()
	println('r: $r')
}

fn (mut r RefStruct) g() {
	s := MyStruct{
		n: 7
	}
	r.f(&s) // reference to `s` inside `r` is passed back to `main() `
}

fn (mut r RefStruct) f(s &MyStruct) {
	r.r = s // would trigger error without `[heap]`
}

import sqlite

// sets a custom table name. Default is struct name (case-sensitive)
[table: 'customers']
struct Customer {
	id		  int	 [primary; sql: serial] // a field named `id` of integer type must be the first field
	name	  string [nonull]
	nr_orders int
	country	  string [nonull]
}

db := sqlite.connect('customers.db')?

sql db {
	create table Customer
}

// select count(*) from customers
nr_customers := sql db {
	select count from Customer
}
println('number of all customers: $nr_customers')
// V syntax can be used to build queries
uk_customers := sql db {
	select from Customer where country == 'uk' && nr_orders > 0
}
println(uk_customers.len)
for customer in uk_customers {
	println('$customer.id - $customer.name')
}
// by adding `limit 1` we tell V that there will be only one object
customer := sql db {
	select from Customer where id == 1 limit 1
}
println('$customer.id - $customer.name')
// insert a new customer
new_customer := Customer{
	name: 'Bob'
	nr_orders: 10
}
sql db {
	insert new_customer into Customer
}

// clearall clears all bits in the array
fn clearall() {
}

// copy_all recursively copies all elements of the array by their value,
// # Some Heading
// if `dupes` is false all duplicate values are eliminated in the process.
// ----------------------------------------
fn copy_all(dupes bool) {
	// ...
}

fn main() {
	sw := time.new_stopwatch()
	println('Hello world')
	println('Greeting the world took: ${sw.elapsed().nanoseconds()}ns')
}

// allocate 2 uninitialized bytes & return a reference to them
mut p := unsafe { malloc(2) }
p[0] = `h` // Error: pointer indexing is only allowed in `unsafe` blocks
unsafe {
	p[0] = `h` // OK
	p[1] = `i`
}
p++ // Error: pointer arithmetic is only allowed in `unsafe` blocks
unsafe {
	p++ // OK
}
assert *p == `i`

struct Foo {
	a int
	b int
}

assert sizeof(Foo) == 8
assert __offsetof(Foo, a) == 0
assert __offsetof(Foo, b) == 4

#flag -lsqlite3
#include "sqlite3.h"
// See also the example from https://www.sqlite.org/quickstart.html
struct C.sqlite3 {
}

struct C.sqlite3_stmt {
}

type FnSqlite3Callback = fn (voidptr, int, &&char, &&char) int

fn C.sqlite3_open(&char, &&C.sqlite3) int

fn C.sqlite3_close(&C.sqlite3) int

fn C.sqlite3_column_int(stmt &C.sqlite3_stmt, n int) int

// ... you can also just define the type of parameter and leave out the C. prefix
fn C.sqlite3_prepare_v2(&C.sqlite3, &char, int, &&C.sqlite3_stmt, &&char) int

fn C.sqlite3_step(&C.sqlite3_stmt)

fn C.sqlite3_finalize(&C.sqlite3_stmt)

fn C.sqlite3_exec(db &C.sqlite3, sql &char, cb FnSqlite3Callback, cb_arg voidptr, emsg &&char) int

fn C.sqlite3_free(voidptr)

fn my_callback(arg voidptr, howmany int, cvalues &&char, cnames &&char) int {
	unsafe {
		for i in 0 .. howmany {
			print('| ${cstring_to_vstring(cnames[i])}: ${cstring_to_vstring(cvalues[i]):20} ')
		}
	}
	println('|')
	return 0
}

fn main() {
	db := &C.sqlite3(0) // this means `sqlite3* db = 0`
	// passing a string literal to a C function call results in a C string, not a V string
	C.sqlite3_open(c'users.db', &db)
	// C.sqlite3_open(db_path.str, &db)
	query := 'select count(*) from users'
	stmt := &C.sqlite3_stmt(0)
	// NB: you can also use the `.str` field of a V string,
	// to get its C style zero terminated representation
	C.sqlite3_prepare_v2(db, &char(query.str), -1, &stmt, 0)
	C.sqlite3_step(stmt)
	nr_users := C.sqlite3_column_int(stmt, 0)
	C.sqlite3_finalize(stmt)
	println('There are $nr_users users in the database.')
	//
	error_msg := &char(0)
	query_all_users := 'select * from users'
	rc := C.sqlite3_exec(db, &char(query_all_users.str), my_callback, voidptr(7), &error_msg)
	if rc != C.SQLITE_OK {
		eprintln(unsafe { cstring_to_vstring(error_msg) })
		C.sqlite3_free(error_msg)
	}
	C.sqlite3_close(db)
}

[export: 'my_custom_c_name']
fn foo() {
}

$if windows {
	#include "@VEXEROOT/thirdparty/stdatomic/win/atomic.h"
} $else {
	#include "@VEXEROOT/thirdparty/stdatomic/nix/atomic.h"
}

// declare functions we want to use - V does not parse the C header
fn C.atomic_store_u32(&u32, u32)
fn C.atomic_load_u32(&u32) u32
fn C.atomic_compare_exchange_weak_u32(&u32, &u32, u32) bool
fn C.atomic_compare_exchange_strong_u32(&u32, &u32, u32) bool

const num_iterations = 10000000

// see section "Global Variables" below
__global (
	atom u32 // ordinary variable but used as atomic
)

fn change() int {
	mut races_won_by_change := 0
	for {
		mut cmp := u32(17) // addressable value to compare with and to store the found value
		// atomic version of `if atom == 17 { atom = 23 races_won_by_change++ } else { cmp = atom }`
		if C.atomic_compare_exchange_strong_u32(&atom, &cmp, 23) {
			races_won_by_change++
		} else {
			if cmp == 31 {
				break
			}
			cmp = 17 // re-assign because overwritten with value of atom
		}
	}
	return races_won_by_change
}

fn main() {
	C.atomic_store_u32(&atom, 17)
	t := go change()
	mut races_won_by_main := 0
	mut cmp17 := u32(17)
	mut cmp23 := u32(23)
	for i in 0 .. num_iterations {
		// atomic version of `if atom == 17 { atom = 23 races_won_by_main++ }`
		if C.atomic_compare_exchange_strong_u32(&atom, &cmp17, 23) {
			races_won_by_main++
		} else {
			cmp17 = 17
		}
		desir := if i == num_iterations - 1 { u32(31) } else { u32(17) }
		// atomic version of `for atom != 23 {} atom = desir`
		for !C.atomic_compare_exchange_weak_u32(&atom, &cmp23, desir) {
			cmp23 = 23
		}
	}
	races_won_by_change := t.wait()
	atom_new := C.atomic_load_u32(&atom)
	println('atom: $atom_new, #exchanges: ${races_won_by_main + races_won_by_change}')
	// prints `atom: 31, #exchanges: 10000000`)
	println('races won by\n- `main()`: $races_won_by_main\n- `change()`: $races_won_by_change')
}

import sync

__global (
	sem	  sync.Semaphore // needs initialization in `init()`
	mtx	  sync.RwMutex // needs initialization in `init()`
	f1	  = f64(34.0625) // explicily initialized
	shmap shared map[string]f64 // initialized as empty `shared` map
	f2	  f64 // initialized to `0.0`
)

fn init() {
	sem.init(0)
	mtx.init()
}

#flag linux -lsdl2
#flag linux -Ivig
#flag linux -DCIMGUI_DEFINE_ENUMS_AND_STRUCTS=1
#flag linux -DIMGUI_DISABLE_OBSOLETE_FUNCTIONS=1
#flag linux -DIMGUI_IMPL_API=

#pkgconfig r_core
#pkgconfig --cflags --libs r_core

$if $pkgconfig('mysqlclient') {
	#pkgconfig mysqlclient
} $else $if $pkgconfig('mariadb') {
	#pkgconfig mariadb
}

#flag -I @VMODROOT/c
#flag @VMODROOT/c/implementation.o
#include "header.h"

fn main() {
	// Support for multiple conditions in one branch
	$if ios || android {
		println('Running on a mobile device!')
	}
	$if linux && x64 {
		println('64-bit Linux.')
	}
	// Usage as expression
	os := $if windows { 'Windows' } $else { 'UNIX' }
	println('Using $os')
	// $else-$if branches
	$if tinyc {
		println('tinyc')
	} $else $if clang {
		println('clang')
	} $else $if gcc {
		println('gcc')
	} $else {
		println('different compiler')
	}
	$if test {
		println('testing')
	}
	// v -cg ...
	$if debug {
		println('debugging')
	}
	// v -prod ...
	$if prod {
		println('production build')
	}
	// v -d option ...
	$if option ? {
		println('custom option')
	}
}

fn main() {
	embedded_file := $embed_file('v.png', .zlib) // compressed using zlib
	os.write_file('exported.png', embedded_file.to_string())?

	compile_time_env := $env('ENV_VAR')
	println(compile_time_env)
}

fn build() string {
	name := 'Peter'
	age := 25
	numbers := [1, 2, 3]
	return $tmpl('1.txt')
}

$if linux {
	$compile_error('Linux is not supported')
}

eprintln('file: ' + @FILE + ' | line: ' + @LINE + ' | fn: ' + @MOD + '.' + @FN)

import v.vmod
vm := vmod.decode( @VMOD_FILE ) or { panic(err) }
eprintln('$vm.name $vm.version\n $vm.description')

fn main() {
	$for field in User.fields {
		$if field.typ is string {
			println('$field.name is of type string')
		}
	}
}

struct Vec {
	x int
	y int
}

fn (a Vec) str() string {
	return '{$a.x, $a.y}'
}

fn (a Vec) + (b Vec) Vec {
	return Vec{a.x + b.x, a.y + b.y}
}

fn (a Vec) - (b Vec) Vec {
	return Vec{a.x - b.x, a.y - b.y}
}

fn main() {
	a := Vec{2, 3}
	b := Vec{4, 5}
	mut c := Vec{1, 2}
	println(a + b) // "{6, 8}"
	println(a - b) // "{-2, -2}"
	c += a
	println(c) // "{3, 5}"
}

a := 100
b := 20
mut c := 0
asm amd64 {
	mov eax, a
	add eax, b
	mov c, eax
	; =r (c) as c // output
	; r (a) as a // input
	  r (b) as b
}
println('a: $a') // 100
println('b: $b') // 20
println('c: $c') // 120

// [flag] enables Enum types to be used as bitfields

[flag]
enum BitField {
	read
	write
	other
}

fn main() {
	assert 1 == int(BitField.read)
	assert 2 == int(BitField.write)
	mut bf := BitField.read
	assert bf.has(.read | .other) // test if *at least one* of the flags is set
	assert !bf.all(.read | .other) // test if *all* of the flags is set
	bf.set(.write | .other)
	assert bf.has(.read | .write | .other)
	assert bf.all(.read | .write | .other)
	bf.toggle(.other)
	assert bf == BitField.read | .write
	assert bf.all(.read | .write)
	assert !bf.has(.other)
}

// Calling this function will result in a deprecation warning
[deprecated]
fn old_function() {
}

// It can also display a custom deprecation message
[deprecated: 'use new_function() instead']
[deprecated_after: '2021-05-27']
fn legacy_function() {}

// This function's calls will be inlined.
[inline]
fn inlined_function() {
}

// This function's calls will NOT be inlined.
[noinline]
fn function() {
}

[if debug]
fn foo() {
}

fn bar() {
	foo() // will not be called if `-d debug` is not passed
}

if x {
	// ...
	if y {
		unsafe {
			goto my_label
		}
	}
	// ...
}
my_label: